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NOTATION 

- 
ha 
L 
M 
P 

Ro 
r 

S 

s 

Span of a wing 
Functional constants in Equation (32) 
Viscous correction in Equation (33) 

Scale factors for curvilinear coordinates 5 and B, 
respectively; ha is also called equivalent radius 
Equal to ha/% 

A length segment 
Mach number 

Static pressure 

Nose radius 

Body radius measured from body axis 
Distance along a streamline measured from the stagnation 
point 
Equal to S/% 

U,V Inviscid velocity components in (x,@) coordinates 

ue 

v, Free-stream velocity 

Velocity at the edge of boundary layer 

V,, Vz, V, Velocity components in curvilinear coordinates 5 ,  $, 6 

x, @, z Body-oriented orthogonal coordinates 

z Equal to x/% 

a Angle of attack 

t 
9 

Effective ratio of specific heats after shock 

Angle between the tangent to a local streamline and the 
radial line 

5 ,  8, C Streamline-oriented, orthogonal, curvilinear coordinates 
P Density 

Subscripts 

e At the edge of boundary layer 

0 Stagnation conditions at the edge of boundary layer 

0 Undisturbed, free-stream condition 

iii 



ABSTRACT 

An exact method has been developed f o r  determining the  

s t reaml ine  geometry and equiva len t  r ad ius  ( t h e  scale f a c t o r  

f o r  t he  normal coordinate  i n  a streamwise coordinate  system) 

over a f la t  d e l t a  wing with c y l i n d r i c a l  leading edge a t  angles  

of a t t a c k .  

i n v i s c i d  pressure  d i s t r i b u t i o n ,  e i t h e r  t h e o r e t i c a l  o r  

experimental .  With the  a i d  of  the  present  method, th ree-  

This method r equ i r e s  a knowledge of t h e  su r face  

dimensional hypersonic heat  t r a n s f e r  can be simply ca l cu la t ed  

through t h e  axisymmetric analogue. 

Resul ts  are presented f o r  f l a t  d e l t a  wings t r a v e l i n g  a t  

hypersonic speeds and at various angles  of  a t t a c k .  

r e s u l t s  i n d i c a t e  t h a t  the  s t reaml ine  geometry depends heavi ly  

on pressure  d i s t r i b u t i o n  used i n  the  ca l cu la t ion .  

method g ives  b e t t e r  c o r r e l a t i o n  with experimental  data than 

does the  pe r tu rba t ion  method. 

Calculated 

The present  

ADMCNISTRATIVE INFOP3€ATION 

The work presented i n  t h i s  r epor t  w a s  supported j o i n t l y  by 

the  Naval A i r  Systems Command and NASA Marshall Space F l i g h t  Center 

under NAVAIR TASK A370538B and Re qu 
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INTRODUCTION 

The calculation of three-dimensional viscous flows can be substantially 

simplified by using streamwise coordinates. This has become a popular 
procedure for computing hypersonic heat transfer to bodies at an angle of 

attack. I-'* The most obvious difficulty is how to determine the three- 
1 

dimensional inviscid streamline pattern and its inherent equivalent radius. 

The available literature contains a few analyses for obtaining the 
inviscid streamline geometry. 4s7-9  Previous work by the present author 

provides the most straightforward method. It gives exact equations for 

9 -  

determining the surface streamline pattern and equivalent radius over 

bodies of revolution at an angle of attack. 
of the pressure distribution, either theoretical or experimental. It has 
been successfully applied to cases covering hypersonic laminar and turbulent 
heat transfer to bodies of revolution at particular angles of attack. 

In an extension of previous work, this report describes a method 

The method requires knowledge 

developed for determining the streamline geometry and equivalent radius 
over a flat delta wing with cylindrical leading edge at an angle of attack. 

Results are presented for the cases of a flat delta wing and a cylindrical 
leading edge at hypersonic speeds. 

ANALYSIS 

COORDINATE SYSTEMS 

Two coordinate systems were used: 

1. The body-oriented orthogonal system with coordinates x, @, and z .  

For this system, 
dL2 = dx2 + (xd@)))" + dz2 

2. The streamwise orthogonal system with coordinates 5 ,  B, and 5 .  For 

this system, 
dL2 = (h,df)" + f d e  

They are shown in Figures 1 and 2. 

*References are listed on page 21. 
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The body-oriented orthogonal coordinates  (x,@,z) are employed as a 

reference frame upon which the  three-dimensional i nv i sc id  flow equat ions 

are wr i t t en .  (Note t h a t  t h e  z-coordinate is always zero at  body surface.)  

The streamwise su r face  coordinates  (%,8 ,6 )  are ca lcu la t ed  i n  terms of body 

coordinates  x and @. 

be ca l cu la t ed  along with the s t reaml ine  geometry. Since the  scale f a c t o r  

ha appears i n  t h e  three-dimensional flow, equat ions wr i t ten  i n  streamwise 

coordinates  correspond t o  the  r ad ius  f o r  a n  axisymmetric system; i t  i s  

r e f e r r e d  t o  here  as "equivalent  radiustt  t o  g ive  more physical  meaning. 

EQUATIONS FOR STREAMLINE GEOMETRY 

The scale f a c t o r  ha for the  B coordinate  must a l s o  

In body-oriented orthogonal coordinates ,  the i n v i s c i d  momentum 

equat ions along the  su r face  of a general  three-dimensional body are: 

x-momentum 

@-momentum 

where x is  the  d i s t ance  along the  body su r face  of a constant  @ plane and 

(d is the  azimuthal angle  measured from a reference  pos i t i on .  It is 

convenient t o  measure @ from the  leading edge i f  the s t reaml ine  p a t t e r n  

i s  a converging flow o r  from the  c e n t e r l i n e  i f  it i s  a diverging flow 

(see Figure 1). 

su r face  i n  t h e  x and @ d i r e c t i o n s ,  r e spec t ive ly ,  and P i s  the  s ta t ic  

The v e l o c i t y  components u and v are measured along the  

pressure.  

The geometry of any s t reamline emanating from the  s t agna t ion  poin t  

may be expressed as @ = @(x,B); here B is  constant  a long a s t reamline.  

The coordinates  are r e l a t e d  t o  the  v e l o c i t y  components through the  

r e l a t i o n  

E!Q=- V 

dx U. (3) 
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Defining D/Dx as the substantial derivative, or derivative along a 
streamline, Equation (3) can be written in the form 

Differentiating 

9 , -  V 
Dx xu 

the above equation with respect to x yields 

- -  
xu 

Du 

X 
" a 8 -  
Dxa 

Since u = u(x,@), then 

and using Equation (4), the above expression can be written as 

v d u  Du aU 

Dx ax xu a + -- - = -  

Using this result in Equation (l), one gets 

Dx U 

In a similar manner, Equation (2) gives 

Since v" = $ f P / p ,  it follows that 

(4) 

( 5 )  ' -  

Substituting Equations (7) through ( 9 )  into Equation (5) with the aid 
0% Equation (4), one obtains 

4 



Although Equation (10) is appropriate for calculating the streamline 
location in terms of x and @, it must be recast into a first-order 
equation for the following reasons: 

1. 
a streamline is obtained through double integration and the accumulated 
error in numerical integration will be greater than a first-order one. 

2 

equivalent radius, and it is convenient to use a first-order equation as 
the basic differential equation. 

It is a second-order equation to which the solution (d = @(x) along 

Further differentiation will be involved in deriving the equations for 

Accordingly, a new variable b), the angle between the tangent of local 

streamline and x-axis, is given by the relation 

Differentiating Equation (11) with respect to x along a streamline and 
rearranging, one finds that 

(12) E @ =  1 De tan 8 - - -  
ma x cos2e Dx Xa 

The differential equation for determining the local direction of a 

streamline is found by equating Equations (10) and (12) and rearranging: 

Also 

D0 ap tan 8 - = 1 (tan 8 
ax Dx -MP 

from Equation (ll), 

I l a = -  tan 8 
Dx X 

Equations (13) and (14) are valid along a streamline and so they can 
be integrated simultaneously to determine the geometry of a chosen stream- 
line 8 = e(x) and @ = #(x). However, the derivatives D#/Dx and De/Dx 

become infinite when 8 = 90 degrees.’ In connection with these infinite 

derivatives, it is helpful to rewrite Equations (13) and (14) by using 
S (the distance measured along a streamline) as an independent variable 
instead of x. Accordingly, along a streamline: 

!?!it 
DS Dx DS 
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Since 

Dx - * cos e DS 

therefore 

and Equation (13) becomes 

As a result of the change of the independent variables, x now 
becomes a dependent variable. Hence, x can be calculated simultaneously 
with 8 and qj from the relation: 

cos e Dx 
DS 
- =  

Equations (15), (16) ,  and (17) constitute a set of simultaneous, 
first-order, ordinary differential equations for determining the geometry 
of a chosen streamline from a known pressure distribution. The integration 

gives different streamlines for different initial conditions. 

EQUATIONS FOR EQUIVALENT RADIUS 

The previous section provided the necessary equations for determining 
the streamline geometry. However, a very important and essential variable, 

namely, the equivalent radius, has to be determined in order to calculate 

the three-dimensional heat transfer using "axisymmetric analogue." It is 
the scale factor of the coordinate normal to the streamline in the stream- 
wise system. Physically, it is a measure of the spreading distance 

between two adjacent streamlines. 

The desired new system (5,B) is also orthogonal, as mentioned 
previously. The two systems are related analytically. Thus, 

6 



Their d i f f e r e n t i a l s  are 

Also with the a i d  of the fol lowing sketch, 

one f inds  that : 

dx = hlcosO dg - hasine d$ 

hl s in6 hacos9 
d# = dS + dB 

X 

Equating the coefficients i n  Equations (19) and (20) ,  it fol lows that 

7 



Since x = x(5,$) and @ (s,$), then 

For Equation (22a) 

ah ae "(*) cos0 - hisine - a$ a$ as a$ 

Equating the right-hand sides of the above two equations gives 

For Equation (22b): 

and 

Equating the right-hand sides of the above two equations gives 

Substituting the above equation into Equation (23) and simplifying, one 
obtains along a streamline 

a 



The t e r m  (ae/a$) i n  Equation (24) is  obtained by d i f f e r e n t i a t i n g  

Equation (16) with r e spec t  t o  B l e t t i n g  

The r e s u l t  i s  as follows: 

r 

- h e i - (  D e  D e  + *)+ ~ 2 -  s in2  8 
DS 

axa agax X 2 %  
(2 a2p 

a2P + 1 [sin’e - - sinecose - - - - - 
X P  

L 

1 

EQUATIONS FOR CYLINDRICAL LEADING EDGE 

It is necessary t o  employ o the r  body coordinates  (x,@) f o r  t he  

c y l i n d r i c a l  leading edge (see Figure 3) .  Following the same procedure, 

t h e  d i f f e r e n t i a l  equat ions f o r  the s t reaml ine  geometry are: 

case Dx 
DS 
- =  

9 



Those f o r  the  equiva len t  rad ius  are: 

ae 
DS 

ESTIMATION OF SlFRFACE PRESSURE DISTRIBUTION 

As ind ica ted  i n  the previous ana lys i s ,  the su r face  pressure  

d i s t r i b u t i o n  must be-known i n  order  t o  c a l c u l a t e  t he  s t reamline geometry 

and equivalent  rad ius .  Two pressure  es t imat ion  techniques are used f o r  the  

f l a t  d e l t a  wing sur face .  The f i r s t  i s  the  Newtonian-conical flow theory 

given by Hida 10 

~1 + c2tan2@ P 
- I  

p* 

where C, and C, are funct ions of M,, CY, and the  span b. Determination 

of C, and C, involves r a t h e r  lengthy manipulation and thus i t  will not 

be repeated here.  

s t reaml ines  converge t o  the center .  When the  angle  of a t t a c k  is  la rge ,  

$ becomes pos i t i ve ,  which i n  turn ,  forms a diverging s t reaml ine  pa t t e rn .  

This phenomenon agrees  q u a l i t a t i v e l y  with experimental  r e s u l t s .  

A t  a small angle  of a t t a c k  where C, is  negat ive,  

11 The second pressure  es t imat ion  technique is  t h a t  of  Creager 
12 as modified by Buck and McLaughlin. 

10 



i nc l in .  -t 'shock curv. + Eviscous (33) 

where 

(a) Pressure a f t e r  obl ique shock f o r  
small angle  of a t t a c k  
(shock at tached)  

'surf 
P 

i n c l i n  

(b) Pressure by modified Newtonian 
f o r  l a rge  angle  of a t t a c k  
(shock detached) 

= 
'shock curv. Pressure from b l a s t  wave theory 

Correction due t o  boundary l aye r  displacement 

The d e t a i l s  are found i n  Reference 12. However, t h i s  expression 

does not  give diverging flow pa t t e rns  a t  any angle  of a t t a c k .  

d i s t r i b u t i o n  (from Gregorek13) w a s  used f o r  the  c y l i n d r i c a l  leading 

edge. Thus: 

As suggested i n  Reference 12 ,  an  empir ical  expression f o r  pressure 

P - =: 0.32 + 0.455 COS @ + 0.195 COS 2@ + 0.035 COS 3@ 
PO 

- 0.005 COS 4@ (34)  

T h i s  expression i s  good f o r  hypersonic flows. 

A flat  d e l t a  wing with c y l i n d r i c a l  leading edges normally has a 

b lunt  nose. 

simply a shpe r i ca l  cap. 

nose from which s t reamlines  emanate. Therefore,  i f  t h e  flow p a t t e r n  

is  a converging one (see Figure 1,Case I), the  s t reaml ine  geometry and 

the  equivalent  rad ius  must be ca lcu la ted  f i r s t  f o r  t he  nose region, then 

The nose may be a body of revolut ion,  a blunted cone, o r  

The aerodynamic s t agna t ion  po in t  l ies on the  

11 



for the leading edge, and finally for the delta wing surface. 
sequence for a diverging flow (Case TI) is nose first, then wing surface, 
and finally leading edge. The simplest nose configuration is a spherical 
cap. 

The 

An exact geometric solution of the streamline geometry and 
equivalent radius can be obtained merely through transformation of 

coordinates; see the Appendix. The method given in Reference 9 is 
appropriate for other nose configurations such as a' blunted body of 
revolution. 

RESULTS AND DISCUSSION 
Figures 4-6 show calculated streamline geometries over the windward 

side of flat delta wings with a cylindrical leading edge under hypersonic 
flow conditions at different angles of attack. The flow conditions were 

chosen to permit comparison with available theoretical and experimental 

data. 

Figure 4 gives results for the case of a 75 degree swept delta wing 
at M, = 9.6 and C Y =  30 and 60 degrees. 
was used for the present method. At a = 30 degrees, it yielded a 
converging streamline pattern. As the angle of attack increased, 

a =  60 degrees, the flow shifted toward a diverging pattern. 

also indicates results for the perturbation method of Polak and Li14 and 
for experimental data taken by Bertram and Henderson. l5 

present method shows better agreement with the experimental data than does 
the perturbation method. 

The Newtonian-conical pressure 

Figure 4 

Note that the 

The extent to which results depend on the pressure distributions 
utilized in calculations is demonstrated by Figure 5 which shows streamline 
patterns over a 60 degree swept delta wing at M, = 8.0 and a =  30 degrees 
obtained by two different techniques for estimating pressure: (1) the 

Newtonian-conical pressure (Equation ( 3 2 ) )  and (2) the hybrid pressure 

(Equation (33)) .  

under the same flow condition. 

Quite different streamline patterns were obtained even 

The difference became larger near the 
axis of symmetry of the wing. 

streamline to cross the axis of symmetry. 
Newtonian-conical pressure appear to cross that line because a finite 

pressure gradient in the q3 direction still exists at the axis of symmetry. 

Physically it is impossible for any 

The streamlines given by the 

1 



(This p a r t i c u l a r  drawback of the  Newtonian-conical theory ought t o  be 

eliminated.)  

The s t reamlines  shown i n  Figure 5 come from the  c y l i n d r i c a l  leading 

edge of the  wing. 

as obtained from the  present  method using the  empir ical  p ressure  

d i s t r i b u t i o n  (Equation (34)). The flow condi t ions are the  same as i n  

Figure 5. As a consequence of t h e  angle  of a t t a c k ,  the  ql = 30 degree 

l i n e  on the  cy l inder  becomes the  margin t h a t  d iv ides  the  windward and 

leeward s i d e s .  Streamlines ly ing  above t h a t  d iv id ing  l i n e  w i l l  run 

i n t o  the  windward s i d e  of the  wing; a l l  o the r s  w i l l  go to  the  leeward 

s i d e .  The r e s u l t s  on t h i s  c y l i n d r i c a l  leading edge provide the  s t a r t i n g  

condi t ions f o r  i n t e g r a t i o n  along the  wing sur face .  

Figure 6 gives  r e s u l t s  f o r  t h i s  po r t ion  of t he  sur face  

The equivalent  radius  can a l s o  be e a s i l y  ca lcu la ted  with the  same 

pressure d i s t r i b u t i o n  as used f o r  the s t reaml ine  geometry. The 

equivalent  rad ius  and i t s  assoc ia ted  app l i ca t ion  t o  hypersonic hea t  

t r a n s f e r  has been computed by Sacks. 
* 

b CONCLUSIONS 

The following conclusions are drawn from the present  study: 

1. Calculat ions of s t reamline geometry depend heavi ly  on the  

pressure d i s t r i b u t i o n  used. The more r e a l i s t i c  the pressure d i s t r i b u t i o n ,  

the  more exac t  t he  method. 

2. The s t reaml ine  geometry obtained from the  present  method using 

the  Newtonian-conical pressure f o r  a f l a t  d e l t a  wing a t  hypersonic speeds 

correlates b e t t e r  with experimental d a t a  than does t h a t  obtained by the  

per turba t ion  method. 

~~~ ~ 

*Reported informally i n  NSRDC Tech Note AL-203 
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APPENDIX 

GEOMETRIC SOLUTION F O R A  SPHERICAL CAP 

With the a i d  of the following sketch, 

.- 
I 

windward 
line 

Reference 9 showed that: 

Center 
of 

sphere 

y%*= 
*/- 

mer i d  ian 
line 

- 
x = Arccos(cosa cos - sinu s i n  s cost?) (A-1) 
- - 
x* 5 1 - cos x 

- 
1 sin S sin$ 

s i n  X 4 = Arcsin( 

1 sina s i n $  
s i n  iT 8 = Arcsin( 

and 

- 
hz = s i n  s 

where - x -  x* - S - h2 
RO 

R ,  S = - a n d h 2 = -  R , x * = -  R 0 
x = -  

0 0 

. 

b 

(A-2) 

(A-3) 

(A-4) 

. (A-5) 
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Figure la - Case I - Converging Flow Pattern 

Figure lb - Case I1 - Diverging Flow Pattern 

Figure 1 - Coordinate Systems for F l a t  Delta Wing 
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